Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 9, 2012

Functionalized electrospun nanofibers as bioseparators in microfluidic systems

Author affiliations

Abstract

Functionalized electrospun nanofibers were integrated into microfluidic channels to serve as on-chip bioseparators. Specifically, poly(vinyl alcohol) (PVA) nanofiber mats were shown to successfully serve as bioseparators for negatively charged nanoparticles. Nanofibers were electrospun onto gold microelectrodes, which were incorporated into poly(methyl methacrylate) (PMMA) microfluidic devices using UV-assisted thermal bonding. PVA nanofibers functionalized with poly(hexadimethrine bromide) (polybrene) were positively charged and successfully filtered negatively charged liposomes out of a buffer solution, while negatively charged nanofibers functionalized with Poly(methyl vinyl ether-alt-maleic anhydride) (POLY(MVE/MA)) were shown to repel the liposomes. The effect of fiber mat thickness was studied using confocal fluorescence microscopy, determining a quite broad optimal range of thicknesses for specific liposome retention, which simplifies fiber mat production with respect to retention reliability. Finally, it was demonstrated that liposomes bound to positively charged nanofibers could be selectively released using a 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES)-sucrose-saline (HSS) solution of pH 9, which dramatically changes the nanofiber zeta potential and renders the positively charged nanofibers negatively charged. This is the first demonstration of functional electrospun nanofibers used to enable sample preparation procedures of isolation and concentration in lab-on-a-chip devices. This has far reaching impact on the ability to integrate functional surfaces and materials into microfluidic devices and to significantly expand their ability toward simple lab-on-a-chip devices.

Graphical abstract: Functionalized electrospun nanofibers as bioseparators in microfluidic systems

Supplementary files

Article information


Submitted
21 Dec 2011
Accepted
27 Feb 2012
First published
28 Feb 2012

Lab Chip, 2012,12, 1696-1701
Article type
Paper

Functionalized electrospun nanofibers as bioseparators in microfluidic systems

L. Matlock-Colangelo, D. Cho, C. L. Pitner, M. W. Frey and A. J. Baeumner, Lab Chip, 2012, 12, 1696 DOI: 10.1039/C2LC21278A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements