Issue 15, 2012

Microfluidic micropipette aspiration for measuring the deformability of single cells

Abstract

We present a microfluidic technique for measuring the deformability of single cells using the pressure required to deform such cells through micrometre-scale tapered constrictions. Our technique is equivalent to whole-cell micropipette aspiration, but involves considerably simpler operation, less specialized equipment, and less technical skill. Single cells are infused into a microfluidic channel, and then deformed through a series of funnel-shaped constrictions. The constriction openings are sized to create a temporary seal with each cell as it passes through the constriction, replicating the interaction with the orifice of a micropipette. Precisely controlled deformation pressures are generated using an external source and then attenuated 100 : 1 using an on-chip microfluidic circuit. Our apparatus is capable of generating precisely controlled pressures as small as 0.3 Pa in a closed microchannel network, which is impervious to evaporative losses that normally limit the precision of such equipment. Intrinsic cell deformability, expressed as cortical tension, is determined from the threshold deformation pressure using the liquid-drop model. We measured the deformability of several types of nucleated cells and determined the optimal range of constriction openings. The cortical tension of passive human neutrophils was measured to be 37.0 ± 4.8 pN μm−1, which is consistent with previous micropipette aspiration studies. The cortical tensions of human lymphocytes, RT4 human bladder cancer cells, and L1210 mouse lymphoma cells were measured to be 74.7 ± 9.8, 185.4 ± 25.3, and 235.4 ± 31.0 pN μm−1 respectively. The precision and usability of our technique demonstrates its potential as a biomechanical assay for wide-spread use in biological and clinical laboratories.

Graphical abstract: Microfluidic micropipette aspiration for measuring the deformability of single cells

Article information

Article type
Paper
Submitted
24 Feb 2012
Accepted
17 Apr 2012
First published
18 Apr 2012

Lab Chip, 2012,12, 2687-2695

Microfluidic micropipette aspiration for measuring the deformability of single cells

Q. Guo, S. Park and H. Ma, Lab Chip, 2012, 12, 2687 DOI: 10.1039/C2LC40205J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements