Issue 16, 2012

On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes

Abstract

This study demonstrates the use of on-chip gold mushroom-shaped microelectrodes (gMμEs) to generate localized electropores in the plasma membrane of adhering cultured neurons and to electrophysiologically monitor the ensuing membrane repair dynamics. Delivery of an alternating voltage pulse (0.5–1 V, 100 Hz, 300 ms) through an extracellularly positioned micrometer-sized gMμE electroporates the patch of plasma membrane facing the microelectrode. The repair dynamics of the electropores were analyzed by continuous monitoring of the neuron transmembrane potential, input resistance (Rin) and action potential (AP) amplitude with an intracellular microelectrode and a number of neighbouring extracellular gMμEs. Electroporation by a gMμE is associated with local elevation of the free intracellular calcium concentration ([Ca2+]i) around the gMμE. The membrane repair kinetics proceeds as an exponential process interrupted by abrupt recovery steps. These abrupt events are consistent with the “membrane patch model” of membrane repair in which patches of intracellular membrane fuse with the plasma membrane at the site of injury. Membrane electroporation by a single gMμE generates a neuron-gMμE configuration that permits recordings of attenuated intracellular action potentials. We conclude that the use of on-chip cultured neurons via a gMμE configuration provides a unique neuroelectronic interface that enables the selection of individual cells for electroporation, generates a confined electroporated membrane patch, monitors membrane repair dynamics and records attenuated intracellular action potentials.

Graphical abstract: On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes

Article information

Article type
Paper
Submitted
24 Jan 2012
Accepted
30 Apr 2012
First published
10 May 2012

Lab Chip, 2012,12, 2865-2873

On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes

A. Hai and M. E. Spira, Lab Chip, 2012, 12, 2865 DOI: 10.1039/C2LC40091J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements