A unique microfluidic system is developed which enables the interrogation of a single particle by using multiple force balances from a combination of optical force, hydrodynamic drag force, and electrophoretic force. Two types of polystyrene (PS) particles with almost identical size and refractive index (plain polystyrene (PS) particle – mean diameter: 2.06 μm, refractive index: 1.59; carboxylated polystyrene (PS-COOH) particles – mean diameter: 2.07 μm, refractive index: 1.60), which could not be distinguished by optical chromatography, reveal different electrokinetic behaviors resulting from the difference in their surface charge densities. The PS-COOH particles, despite their higher surface charge density when compared to the PS particles, experience a lower electrophoretic force, regardless of ionic strength. This phenomenon can be understood when the more prominent polarization of the counter ion cloud surrounding the PS-COOH particles is considered. The surface roughness of the carboxylated particles also plays an important role in the observed electrokinetic behavior.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?