Issue 17, 2012

High capacity carbon dioxide adsorption by inexpensive covalent organic polymers

Abstract

Efficient CO2 scrubbing without a significant energy penalty remains an outstanding challenge for the fossil fuel-burning industry where aqueous amine solutions are still widely used. Porous materials have long been evaluated for next generation CO2 adsorbents. Porous polymers, robust and inexpensive, show promise as feasible materials for the capture of CO2 from warm exhaust fumes. We report the syntheses of porous covalent organic polymers (COPs) with CO2 adsorption capacities of up to 5616 mg g−1 (measured at high pressures, i.e. 200 bar) and industrially relevant temperatures (as warm as 65 °C). COPs are stable in boiling water for at least one week and near infinite CO2/H2 selectivity is observed.

Graphical abstract: High capacity carbon dioxide adsorption by inexpensive covalent organic polymers

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2012
Accepted
21 Feb 2012
First published
24 Feb 2012

J. Mater. Chem., 2012,22, 8431-8437

High capacity carbon dioxide adsorption by inexpensive covalent organic polymers

H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, M. Atilhan and C. T. Yavuz, J. Mater. Chem., 2012, 22, 8431 DOI: 10.1039/C2JM30761H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements