UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts†
Abstract
Surface engineering of TiO2 nanobelts by the controlled assembly of functional heterostructures represents an effective approach for the synthesis of high-performance photocatalysts. In this study, we prepared a novel Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured nanobelt by depositing bismuth hydroxide onto the TiO2 nanobelt surface. A thermal annealing treatment led to the formation of a Bi4Ti3O12 interlayer that functioned as a bridge to link Bi2O3 and TiO2. The double-heterostructured TiO2 nanobelts exhibited better UV light photocatalytic performance than commercial P25. Importantly, the photocatalytic activity in the visible range was markedly better than that of Bi2O3 and Bi2O3/TiO2 heterostructured TiO2 nanobelts. The enhanced performance was accounted for by the material band structures where the matching was improved by the unique interlayer.
Please wait while we load your content...