Issue 31, 2012

Interactions of nanoparticles with purple membrane films

Abstract

Lamellar structures self-assembled from purple membranes (PM) of Halobacterium salinarum are promising building units for bio-electronic devices, due to proton pumping ability of the PM. The functionality and durability of such devices are hinged on the structural integrity of PM lamellae. Using X-ray diffraction, we examined the structure of PM multilayers on silicon when challenged with two types of nanoparticles (NPs): carboxymethyl-dextran coated magnetite (2.4 nm core size) and citrate-stabilised gold (5 nm core size). We tried to infiltrate the PM multilayers with the NPs using two alternative routes: facile penetration (FP) and co-assembly (CS) by solution mixing. We found that under all conditions the NPs did not disrupt the overall lamellar structure of the PM films or enter the inter-lamellar space, although the presence of NPs affected the self-assembly process of the PM films. This caused an increase in the disorder in the film structure, as assessed by the decreasing number of layers in the multilayer stack as the NP concentration increased. Despite this, UV-Vis spectroscopic measurements showed that the conformation of the retinal residue within the protein was intact so the proton pumping functionality of PM multilayers would be retained in all samples with added NPs. Our results show that the effects of NPs on the PM structure and functionality are subtle and complex, and we will discuss the structural integrity of lipid-protein composite PM films against NP infiltration in terms of their high bending modulus as compared with that of fluid lipid bilayers.

Graphical abstract: Interactions of nanoparticles with purple membrane films

Supplementary files

Article information

Article type
Paper
Submitted
19 Apr 2012
Accepted
21 Jun 2012
First published
25 Jun 2012

J. Mater. Chem., 2012,22, 15635-15643

Interactions of nanoparticles with purple membrane films

J. M. Bulpett, A. M. Collins, N. H. M. Kaus, P. T. Cresswell, O. Bikondoa, D. Walsh, S. Mann, S. A. Davis and W. H. Briscoe, J. Mater. Chem., 2012, 22, 15635 DOI: 10.1039/C2JM32467A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements