Issue 32, 2012

Different length linkages of graphene modified with metal nanoparticles for oxygen reduction in acidic media

Abstract

This paper reports the chemical synthesis and experimental characterization of various graphene oxide (GO)-supported platinum (Pt) and palladium (Pd) nanoparticle (NP) catalysts. To investigate the relationship between the linker length and the catalytic activities of the metal-decorated GO catalysts, six samples were prepared with three different linker molecules, HS(CH2)2SH, HS(CH2)3SH and HS(CH2)4SH (denoted as GO-l-NPs), and two different metal NPs, Pt and Pd. All GO-l-NP catalysts were tested in oxygen reduction reaction (ORR) using electrochemical techniques such as cyclic voltammetry (CV) and rotating ring disk electrode (RRDE) hydrodynamic voltammetry to quantitatively obtain the ORR kinetic constants and the reaction mechanisms on a glassy carbon electrode (GCE) in 0.5 M H2SO4 solution. All GO-l-NPs/GCE electrodes showed significantly improved ORR activity and mechanisms. GO-l-NPs were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The results showed that Pt and Pd were successfully attached onto the GO surface. A more positive potential catalytic ORR was observed in the modified GO-l-NPs with longer chain linker lengths in both cases.

Graphical abstract: Different length linkages of graphene modified with metal nanoparticles for oxygen reduction in acidic media

Article information

Article type
Paper
Submitted
19 Mar 2012
Accepted
23 May 2012
First published
24 May 2012

J. Mater. Chem., 2012,22, 16353-16360

Different length linkages of graphene modified with metal nanoparticles for oxygen reduction in acidic media

D. Kim, M. S. Ahmed and S. Jeon, J. Mater. Chem., 2012, 22, 16353 DOI: 10.1039/C2JM31685D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements