Issue 26, 2012

Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors

Abstract

Vertically aligned nickel–cobalt oxide (NCO) nanosheets with porous structure were successfully synthesized on FTO substrates by a simple electrochemical method without any templates. Cyclic voltammetry (CV) and galvanostatic charge/discharge measurements show that the porous NCO nanosheets have an ideal capacitive performance and long-term stability. With an optimum amount of Ni, the specific capacitance for the NCOs could reach as high as 453 F g−1 at a scan rate of 5 mV s−1 and 506 F g−1 at a current density of 1 A g−1, showing an improvement of around 50% compared with cobalt oxide. Furthermore, a symmetric supercapacitor based on two NCO electrodes exhibits a maximum specific capacitance of 89.2 F g−1 at 0.17 A g−1.

Graphical abstract: Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
15 Feb 2012
Accepted
15 Apr 2012
First published
24 Apr 2012

J. Mater. Chem., 2012,22, 13357-13364

Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors

X. Lu, X. Huang, S. Xie, T. Zhai, C. Wang, P. Zhang, M. Yu, W. Li, C. Liang and Y. Tong, J. Mater. Chem., 2012, 22, 13357 DOI: 10.1039/C2JM30927K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements