Issue 19, 2012

Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde

Abstract

Alginate dialdehyde (ADA) biopolymers possessing a degree of oxidation of either 10 or 50% (10-ADA and 50-ADA, respectively) were characterized using FTIR, XPS and SEC. The aldehyde vibrational mode at 1740 cm−1 was observed only in ADA which had been equilibrated under ambient conditions while dry samples did not display this band. Spectral changes, both FTIR and XPS, were consistent with formation of hemiacetal moieties. The two types of ADA (10-ADA and 50-ADA) were used as macromolecular crosslinkers to form labile covalent crosslinks in alginate hydrogels. The compositions and properties of the hydrogels were explored through measurement of water uptake and stability in aqueous solution, and characterising the internal structure and mechanical properties by cryogenic scanning electron microscopy and tensile testing, respectively. A decrease in water content was observed when using 50-ADA as compared to 10-ADA correlating with a higher number of crosslinks formed in the hydrogel incorporating 50-ADA. Water uptake also correlated with the amount of 50-ADA incorporated. All ADA–alginate hydrogels displayed short term stability of 3 days after immersion in aqueous solution. The stability of the 50-ADA containing hydrogel was enhanced by introducing ionic crosslinking. Tensile properties of the hydrogels were found to be dependent on the overall polymer density and uniformity of the crosslinking.

Graphical abstract: Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde

Article information

Article type
Paper
Submitted
30 Jan 2012
Accepted
06 Mar 2012
First published
08 Mar 2012

J. Mater. Chem., 2012,22, 9751-9758

Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde

A. Jejurikar, X. T. Seow, G. Lawrie, D. Martin, A. Jayakrishnan and L. Grøndahl, J. Mater. Chem., 2012, 22, 9751 DOI: 10.1039/C2JM30564J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements