Issue 4, 2012

Influence of titania nanotopography on human vascular cell functionality and its proliferation in vitro

Abstract

Surface modification of metallic implants has been suggested as a viable means to alleviate the problems related to late stent restenosis. This work aims to develop an antithrombotic stent surface by appropriate nanosurface modification of biocompatible metallic titanium (Ti) to address these issues. An array of unique, integrated TiO2 nanostructures were developed on a metallic Ti surface using a simple aqueous chemistry technique. The influence of surface nanotopography on the proliferation and functionality of vascular endothelial and smooth muscles cells was investigated in vitro. All nanostructured samples showed significantly enhanced cellular viability and proliferation of endothelial cells, with raised levels of nitric oxide and substantially decreased smooth muscle cell proliferation and platelet adhesion in comparison to unmodified Ti. These beneficial effects suggest the potential use of such nanomodifications on metallic Ti as a suitable solution to reduce the probability of late stent thrombosis associated with bare metallic stents.

Graphical abstract: Influence of titania nanotopography on human vascular cell functionality and its proliferation in vitro

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2011
Accepted
26 Oct 2011
First published
18 Nov 2011

J. Mater. Chem., 2012,22, 1326-1340

Influence of titania nanotopography on human vascular cell functionality and its proliferation in vitro

C. C. Mohan, P. R. Sreerekha, V. V. Divyarani, S. Nair, K. Chennazhi and D. Menon, J. Mater. Chem., 2012, 22, 1326 DOI: 10.1039/C1JM13726C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements