Issue 10, 2012

Effects of shear stress on germ lineage specification of embryonic stem cells

Abstract

Mechanobiology to date has focused on differentiated cells or progenitors, yet the effects of mechanical forces on early differentiation of pluripotent stem cells are still largely unknown. To study the effects of cellular deformation, we utilize a fluid flow bioreactor to apply steady laminar shear stress to mouse embryonic stem cells (ESCs) cultured on a two dimensional surface. Shear stress was found to affect pluripotency, as well as germ specification to the mesodermal, endodermal, and ectodermal lineages, as indicated by gene expression of OCT4, T-BRACHY, AFP, and NES, respectively. The ectodermal and mesodermal response to shear stress was dependent on stress magnitude (ranging from 1.5 to 15 dynes cm−2). Furthermore, increasing the duration from one to four days resulted in a sustained increase in T-BRACHY and a marked suppression of AFP. These changes in differentiation occurred concurrently with the activation of Wnt and estrogen pathways, as determined by PCR arrays for signalling molecules. Together these studies show that the mechanical microenvironment may be an important regulator during early differentiation events, including gastrulation. This insight furthers understanding of normal and pathological events during development, as well as facilitates strategies for scale up production of stem cells for clinical therapies.

Graphical abstract: Effects of shear stress on germ lineage specification of embryonic stem cells

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2011
Accepted
16 Aug 2012
First published
17 Aug 2012

Integr. Biol., 2012,4, 1263-1273

Spotlight

Advertisements