Effectiveness of three configurations of membrane bioreactors on the removal of priority and emergent organic compounds from wastewater: comparison with conventional wastewater treatments
Abstract
In this work the effectiveness of membrane bioreactors as advanced treatment on the removal of emergent and priority organic compounds in wastewater treatment plants has been evaluated during a one-year monitoring study. The studied wastewater treatment plant operates with flat sheet and hollow fibre membranes in two parallel lines. Moreover, a reverse osmosis module connected in series after the hollow fibre membrane was evaluated for one month. Comparison of membrane bioreactor and conventional activated sludge treatment was also investigated, as well as the influence of the physicochemical properties of the compounds on the removal rates achieved. Sixteen pharmaceutical compounds belonging to seven therapeutic groups and eight priority organic pollutants, including linear alkylbenzene sulfonates, nonylphenol and its ethoxylates and phthalate, were monitored. The highest mean concentrations corresponded to priority organic pollutants (309 μg L−1 of linear alkylbenzene sulfonate C12) followed by pharmaceutical compounds (24.5 μg L−1 of ibuprofen). No significant difference of effectiveness was found among flat sheet and hollow fibre membranes. However, an improvement was obtained with the addition of a reverse osmosis module for most of the compounds. Biodegradation has been shown as the main route involved in the removal of organic compounds during both technologies.