Issue 5, 2012

Exciton diffusion length in narrow bandgap polymers

Abstract

We developed a new method to accurately extract the singlet exciton diffusion length in organic semiconductors by blending them with a low concentration of methanofullerene[6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The dependence of photoluminescence (PL) decay time on the fullerene concentration provides information on both exciton diffusion and the nanocomposition of the blend. Experimentally measured PL decays of blends based on two narrow band gap dithiophene–benzothiadiazole polymers, C–PCPDTBT and Si–PCPDTBT, were modeled using a Monte Carlo simulation of 3D exciton diffusion in the blend. The simulation software is available for download. The extracted exciton diffusion length is 10.5 ± 1 nm in both narrow band gap polymers, being considerably longer than the 5.4 ± 0.7 nm that was measured with the same technique in the model compound poly(3-hexylthiophene) as a reference. Our approach is simple, fast and allows us to systematically measure and compare exciton diffusion length in a large number of compounds.

Graphical abstract: Exciton diffusion length in narrow bandgap polymers

Article information

Article type
Paper
Submitted
14 Dec 2011
Accepted
10 Feb 2012
First published
10 Feb 2012

Energy Environ. Sci., 2012,5, 6960-6965

Exciton diffusion length in narrow bandgap polymers

O. V. Mikhnenko, H. Azimi, M. Scharber, M. Morana, P. W. M. Blom and M. A. Loi, Energy Environ. Sci., 2012, 5, 6960 DOI: 10.1039/C2EE03466B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements