Issue 7, 2012

Lithium storage in nitrogen-rich mesoporous carbon materials

Abstract

Nitrogen-rich mesoporous carbon materials were obtained by pyrolyzing gelatin between 700 and 900 °C with a nano-CaCO3 template. The mesoporous structure and the high nitrogen content endowed these materials with reversible capacities up to ca. 1200 mA h g−1. The high specific surface area and the nitrogen doping are responsible for the capacity loss in the initial cycle. FTIR and XPS studies indicate that the nitrogen in the material exists in the form of pyridinic, pyrrolic/pyridonic and graphitic nitrogen. The Raman spectroscopic analysis indicates that the structure of the mesoporous carbon becomes more disordered during discharge and is restored during recharge, a behavior similar to that in nitrogen-free hard carbon materials. The reversible structural variation of these carbon materials ensures their high cyclic reversibility.

Graphical abstract: Lithium storage in nitrogen-rich mesoporous carbon materials

Article information

Article type
Paper
Submitted
31 Mar 2012
Accepted
11 May 2012
First published
11 May 2012

Energy Environ. Sci., 2012,5, 7950-7955

Lithium storage in nitrogen-rich mesoporous carbon materials

Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, Z. Wang, L. Chen and Y. Yang, Energy Environ. Sci., 2012, 5, 7950 DOI: 10.1039/C2EE21817H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements