Issue 6, 2012

Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

Abstract

Diamine-cross-linked membranes were prepared from cross-linkable poly(arylene ether ketone) containing pendant cationic quaternary ammonium group (QPAEK) solution by a facile and general thermal curing method using 4,4′-diaminodiphenylmethane with rigid framework and 1,6-diaminohexane with flexible framework as cross-linker, respectively. Self-cross-linked cationic polymer electrolytes membranes were also prepared for comparison. The diamines were advantageously distributed within the polymeric matrix and its amine function groups interacted with the benzyl bromide of QPAEK, resulting in a double anchoring of the molecule. Combining the excellent thermal stability, the addition of a small amount of diamines enhanced both the chemical and mechanical stability and the phosphoric acid doping (PA) ability of membranes. Fuel cell performance based on impregnated cross-linked membranes have been successfully operated at temperatures up to 120 °C and 180 °C with unhumidified hydrogen and air under ambient pressure, the maximum performance of diamine-cross-linked membrane is observed at 180 °C with a current density of 1.06 A cm−2 and the peak power density of 323 mW cm−2. The results also indicate that the diamine-cross-linked membranes using the rigid cross-linker show much improved properties than that using the flexible cross-linker. More properties relating to the feasibility in high temperature proton exchange membrane fuel cell applications were investigated in detail.

Graphical abstract: Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2012
Accepted
30 Mar 2012
First published
02 Apr 2012

Energy Environ. Sci., 2012,5, 7617-7625

Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

W. Ma, C. Zhao, J. Yang, J. Ni, S. Wang, N. Zhang, H. Lin, J. Wang, G. Zhang, Q. Li and H. Na, Energy Environ. Sci., 2012, 5, 7617 DOI: 10.1039/C2EE21521G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements