Issue 38, 2012

Synthesis and characterization of the crystal structure, the magnetic and the electrochemical properties of the new fluorophosphate LiNaFe[PO4]F

Abstract

The new compound LiNaFe[PO4]F was synthesized by a solid state reaction route, and its crystal structure was determined using neutron powder diffraction data. LiNaFe[PO4]F was characterized by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat capacity, and electrochemical measurements. LiNaFe[PO4]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.9568(6) Å, b = 6.3959(3) Å, c = 11.4400(7) Å, V = 801.7(1) Å3 and Z = 8. The structure consists of edge-sharing FeO4F2 octahedra forming FeFO3 chains running along the b axis. These chains are interlinked by PO4 tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The specific heat and magnetization measurements show that LiNaFe[PO4]F undergoes a three-dimensional antiferromagnetic ordering at TN = 20 K. The neutron powder diffraction measurements at 3 K show that each FeFO3 chain along the b-direction is ferromagnetic (FM), while these FM chains are antiferromagnetically coupled along the a and c-directions with a non-collinear spin arrangement. The galvanometric cycling showed that without any optimization, one mole of alkali metal is extractable between 1.0 V and 5.0 V vs. Li+/Li with a discharge capacity between 135 and 145 mAh g−1.

Graphical abstract: Synthesis and characterization of the crystal structure, the magnetic and the electrochemical properties of the new fluorophosphate LiNaFe[PO4]F

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2012
Accepted
24 Jul 2012
First published
16 Aug 2012

Dalton Trans., 2012,41, 11692-11699

Synthesis and characterization of the crystal structure, the magnetic and the electrochemical properties of the new fluorophosphate LiNaFe[PO4]F

H. Ben Yahia, M. Shikano, H. Sakaebe, S. Koike, M. Tabuchi, H. Kobayashi, H. Kawaji, M. Avdeev, W. Miiller and C. D. Ling, Dalton Trans., 2012, 41, 11692 DOI: 10.1039/C2DT30739A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements