Efficient utilisation of renewable biomass resources, particularly lignocellulosic biomass, for the production of chemicals and fuels has attracted much attention in recent years. The catalytic conversion of cellulose, the main component of lignocellulosic biomass, selectively into a platform chemical such as glucose, 5-hydroxymethyl furfural (HMF), sorbitol or gluconic acid under mild conditions is the most desirable route. Acid catalysis plays a crucial role in the conversion of cellulose via the cleavage of its glycosidic bonds. Owing to their unique features such as strong acidity, water-tolerance, low corrosiveness and recoverability, polyoxometalates have shown promising performances in transformations of cellulose into platform chemicals both in homogeneous and heterogeneous systems. This article highlights recent studies on polyoxometalates and polyoxometalate-based bifunctional catalysts or catalytic systems for the selective conversions of cellulose and cellobiose, a model molecule of cellulose, into platform chemicals.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?