Jump to main content
Jump to site search

Issue 6, 2012
Previous Article Next Article

Dynamic imine chemistry

Author affiliations


Formation of an imine—from an amine and an aldehyde—is a reversible reaction which operates under thermodynamic control such that the formation of kinetically competitive intermediates are, in the fullness of time, replaced by the thermodynamically most stable product(s). For this fundamental reason, the imine bond has emerged as an extraordinarily diverse and useful one in the hands of synthetic chemists. Imine bond formation is one of a handful of reactions which define a discipline known as dynamic covalent chemistry (DCC), which is now employed widely in the construction of exotic molecules and extended structures on account of the inherent ‘proof-reading’ and ‘error-checking’ associated with these reversible reactions. While both supramolecular chemistry and DCC operate under the regime of reversibility, DCC has the added advantage of constructing robust molecules on account of the formation of covalent bonds rather than fragile supermolecules resulting from noncovalent bonding interactions. On the other hand, these products tend to require more time to form—sometimes days or even months—but their formation can often be catalysed. In this manner, highly symmetrical molecules and extended structures can be prepared from relatively simple precursors. When DCC is utilised in conjunction with template-directed protocols—which rely on the use of noncovalent bonding interactions between molecular building blocks in order to preorganise them into certain relative geometries as a prelude to the formation of covalent bonds under equilibrium control—an additional level of control of structure and topology arises which offers a disarmingly simple way of constructing mechanically-interlocked molecules, such as rotaxanes, catenanes, Borromean rings, and Solomon knots. This tutorial review focuses on the use of dynamic imine bonds in the construction of compounds and products formed with and without the aid of additional templates. While synthesis under thermodynamic control is giving the field of chemical topology a new lease of life, it is also providing access to an endless array of new materials that are, in many circumstances, simply not accessible using more traditional synthetic methodologies where kinetic control rules the roost. One of the most endearing qualities of chemistry is its ability to reinvent itself in order to create its own object, as Berthelot first pointed out a century and a half ago.

Graphical abstract: Dynamic imine chemistry

Back to tab navigation

Publication details

The article was received on 11 Nov 2011 and first published on 06 Feb 2012

Article type: Tutorial Review
DOI: 10.1039/C2CS15305J
Citation: Chem. Soc. Rev., 2012,41, 2003-2024
  •   Request permissions

    Dynamic imine chemistry

    M. E. Belowich and J. F. Stoddart, Chem. Soc. Rev., 2012, 41, 2003
    DOI: 10.1039/C2CS15305J

Search articles by author