Issue 19, 2012

Exploring the complexity of aerosol particle properties and processes using single particle techniques

Abstract

The complex interplay of processes that govern the size, composition, phase and morphology of aerosol particles in the atmosphere is challenging to understand and model. Measurements on single aerosol particles (2 to 100 μm in diameter) held in electrodynamic, optical and acoustic traps or deposited on a surface can allow the individual processes to be studied in isolation under controlled laboratory conditions. In particular, measurements can now be made of particle size with unprecedented accuracy (sub-nanometre) and over a wide range of timescales (spanning from milliseconds to many days). The physical state of a particle can be unambiguously identified and its composition and phase can be resolved with a high degree of spatial resolution. In this review, we describe the advances made in our understanding of aerosol properties and processes from measurements made of phase behaviour, hygroscopic growth, morphology, vapour pressure and the kinetics of water transport for single particles. We also show that studies of the oxidative aging of single particles, although limited in number, can allow the interplay of these properties to be investigated. We conclude by considering the contributions that single particle measurements can continue to make to our understanding of the properties and processes occurring in atmospheric aerosol.

Graphical abstract: Exploring the complexity of aerosol particle properties and processes using single particle techniques

Article information

Article type
Critical Review
Submitted
16 Mar 2012
First published
27 Jun 2012

Chem. Soc. Rev., 2012,41, 6631-6662

Exploring the complexity of aerosol particle properties and processes using single particle techniques

U. K. Krieger, C. Marcolli and J. P. Reid, Chem. Soc. Rev., 2012, 41, 6631 DOI: 10.1039/C2CS35082C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements