Issue 2, 2012

Design of magnetic coordination complexes for quantum computing

Abstract

A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

Graphical abstract: Design of magnetic coordination complexes for quantum computing

Article information

Article type
Tutorial Review
Submitted
29 Apr 2011
First published
04 Aug 2011

Chem. Soc. Rev., 2012,41, 537-546

Design of magnetic coordination complexes for quantum computing

G. Aromí, D. Aguilà, P. Gamez, F. Luis and O. Roubeau, Chem. Soc. Rev., 2012, 41, 537 DOI: 10.1039/C1CS15115K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements