Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 18, 2012
Previous Article Next Article

Catalytic activity of nanoalloys from gold and palladium

Author affiliations

Abstract

We present a quantitative study of the catalytic activity of well-defined faceted gold–palladium nanoalloys which are immobilized on cationic spherical polyelectrolyte brushes. The spherical polyelectrolyte brush particles used as carriers for the nanoalloys consist of a solid polystyrene core onto which cationic polyelectrolyte chains of 2-aminoethyl methacrylate are attached. Au/Pd nanoalloy particles with sizes in the range from 1 to 3 nm have been generated which are homogeneously distributed on the surface of the spherical polyelectrolyte brushes. The reduction of 4-nitrophenol has been chosen as a well-controlled model reaction allowing us to determine the catalytic activity of the nanoalloys as a function of the Au/Pd composition. The adsorption behavior was studied by Langmuir–Hinshelwood kinetics. We find a pronounced maximum of the catalytic activity at 75 molar % Au. A comparison of gold, platinum, palladium and gold–palladium alloy nanoparticles is made in terms of Langmuir–Hinshelwood kinetics. Density functional calculations for Au/Pd clusters with up to 38 atoms show that the density of states at the Fermi level increases with increasing Pd content, and that the highest occupied orbitals are associated with Pd atoms. The calculations confirm that small changes in the atomic arrangement can lead to pronounced changes in the particles’ electronic properties, indicating that the known importance of surface effects is further enhanced in nanoalloys.

Graphical abstract: Catalytic activity of nanoalloys from gold and palladium

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Dec 2011, accepted on 07 Mar 2012 and first published on 07 Mar 2012


Article type: Paper
DOI: 10.1039/C2CP23974D
Citation: Phys. Chem. Chem. Phys., 2012,14, 6487-6495

  •   Request permissions

    Catalytic activity of nanoalloys from gold and palladium

    J. Kaiser, L. Leppert, H. Welz, F. Polzer, S. Wunder, N. Wanderka, M. Albrecht, T. Lunkenbein, J. Breu, S. Kümmel, Y. Lu and M. Ballauff, Phys. Chem. Chem. Phys., 2012, 14, 6487
    DOI: 10.1039/C2CP23974D

Search articles by author

Spotlight

Advertisements