Issue 47, 2012

A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells

Abstract

Ruthenium-based C106 and organic D131 sensitizers have been judicially chosen for co-sensitization due to their complementary absorption properties and different molecular sizes. Co-sensitization yields a higher light-harvesting efficiency as well as better dye coverage to passivate the surface of TiO2. The co-sensitized devices C106 + D131 showed significant enhancement in the performance (η = 11.1%), which is a marked improvement over baseline devices sensitized with either D131 (η = 5.6%) or C106 (η = 9.5%). The improved performance of the co-sensitized cell is attributed to the combined enhancement in the short circuit current, open circuit voltage, and the fill-factor of the solar cells. Jsc is improved because of the complementary absorption spectra and favorable energy level alignments of both dyes; whereas, Voc is improved because of the better surface coverage helping to reduce the recombination and increase the electron life time. The origins of these enhancements have been systematically studied through dye desorption, absorption spectroscopy, and intensity modulated photovoltage spectroscopy investigations.

Graphical abstract: A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells

Supplementary files

Article information

Article type
Communication
Submitted
23 Aug 2012
Accepted
04 Oct 2012
First published
04 Oct 2012

Phys. Chem. Chem. Phys., 2012,14, 16182-16186

A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells

L. H. Nguyen, H. K. Mulmudi, D. Sabba, S. A. Kulkarni, S. K. Batabyal, K. Nonomura, M. Grätzel and S. G. Mhaisalkar, Phys. Chem. Chem. Phys., 2012, 14, 16182 DOI: 10.1039/C2CP42959D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements