Issue 35, 2012

Nonadiabatic dynamics of a truncated indigo model

Abstract

Indigo (1) is stable when exposed to ultraviolet light. We employ electronic structure calculations and nonadiabatic trajectory surface-hopping dynamics simulations to study the photoinduced processes and the photoprotection mechanism of an indigo model, bispyrroleindigo (2). Consistent with recent static ab initio calculations on 1 and 2 (Phys. Chem. Chem. Phys., 2011, 13, 1618), we find an efficient deactivation process that proceeds as follows. After vertical photoexcitation, the S1(ππ*) state undergoes an essentially barrierless intramolecular single proton transfer and relaxes to the minimum of an S1 tautomer, which is structurally and energetically close to a nearby conical intersection that acts as a funnel to the S0 state; after this internal conversion, a reverse single hydrogen transfer leads back to the equilibrium structure of the most stable S0 tautomer. This deactivation process is completely dominant in our semiempirical OM2/MRCI nonadiabatic dynamics simulations. The other two mechanisms considered previously, namely excited-state intramolecular double proton transfer and transcis double bond isomerization, are not seen in any of the 325 trajectories of the present surface-hopping simulations. On the basis of the computed time-dependent populations of the S1 state, we estimate an S1 lifetime of about 700 fs for 2 in the gas phase.

Graphical abstract: Nonadiabatic dynamics of a truncated indigo model

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2012
Accepted
24 Jul 2012
First published
24 Jul 2012

Phys. Chem. Chem. Phys., 2012,14, 12378-12384

Nonadiabatic dynamics of a truncated indigo model

G. Cui and W. Thiel, Phys. Chem. Chem. Phys., 2012, 14, 12378 DOI: 10.1039/C2CP41867C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements