Issue 41, 2012

Designing benzosiloles for better optoelectronic properties using DFT & TDDFT approaches

Abstract

Like siloles, benzosiloles have low lying LUMOs due to σ*–π* conjugation between Si and the butadiene moiety but are more amenable for structural tuning. In total, 27 benzosiloles, 12 of them already synthesized and another 15 newly reported here, have been investigated using DFT and TDDFT calculations with an aim to check their suitability for optoelectronic applications. Our results show that all these molecules have excellent π-conjugation throughout. Frontier molecular orbital analysis gives an estimate of the band gap of these benzosilole derivatives and further reveals that the LUMOs are highly localized on the benzosilole moiety whereas HOMOs are localized on both the benzosilole moiety and the substituents. TDDFT calculations have been performed to understand the absorption properties in gas and solvent phases. PCM calculations show that solvation has a minimum effect on absorption maxima. Among the different functionals, PBE0 was found to perform well compared to other functionals and the computed absorption spectra are in good agreement with experiments. Among the designed candidates, styryl substituted benzosiloles are the most promising, showing higher wavelength of absorption and would make better OLED materials. NBO and AIM analysis provide evidence for complete delocalization in these systems. It is interesting to note that eleven out of the fifteen newly designed candidates have lower band gaps than the best known benzosilole derivatives synthesized so far.

Graphical abstract: Designing benzosiloles for better optoelectronic properties using DFT & TDDFT approaches

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2012
Accepted
11 Jul 2012
First published
11 Jul 2012

Phys. Chem. Chem. Phys., 2012,14, 14229-14237

Designing benzosiloles for better optoelectronic properties using DFT & TDDFT approaches

R. V. Solomon, A. P. Bella, S. A. Vedha and P. Venuvanalingam, Phys. Chem. Chem. Phys., 2012, 14, 14229 DOI: 10.1039/C2CP41554B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements