Issue 32, 2012

Classical toy models for the monopole shift and the quadrupole shift

Abstract

The penetration of s- and p1/2-electrons into the atomic nucleus leads to a variety of observable effects. The presence of s-electrons inside the nucleus gives rise to the isotope shift in atomic spectroscopy, and to the isomer shift in Mössbauer spectroscopy. Both well-known phenomena are manifestations of the more general monopole shift. In a recent paper (Koch et al., Phys. Rev. A, 2010, 81, 032507), we discussed the existence of the formally analogous quadrupole shift: a tensor correction to the electric quadrupole interaction due to the penetration of relativistic p1/2-electrons into the nucleus. The quadrupole shift is predicted to be observable by high-accuracy molecular spectroscopy on a set of 4 molecules (the quadrupole anomaly). The simple physics behind all these related phenomena is easily obscured by an elaborate mathematical formalism that is required for their derivation: a multipole expansion in combination with perturbation theory, invoking quantum physics and ideally relativity. In the present paper, we take a totally different approach. We consider three classical ‘toy models’ that can be solved by elementary calculus, and that nevertheless contain all essential physics of the monopole and quadrupole shifts. We hope that this intuitive (yet exact) analysis will increase the understanding about multipole shift phenomena in a broader community.

Graphical abstract: Classical toy models for the monopole shift and the quadrupole shift

Article information

Article type
Paper
Submitted
08 Mar 2012
Accepted
28 May 2012
First published
28 May 2012

Phys. Chem. Chem. Phys., 2012,14, 11308-11317

Classical toy models for the monopole shift and the quadrupole shift

K. Rose and S. Cottenier, Phys. Chem. Chem. Phys., 2012, 14, 11308 DOI: 10.1039/C2CP40740J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements