Issue 20, 2012

Rediscovering cobalt's surface chemistry

Abstract

Cobalt is an active metal for a variety of commercially and environmentally significant heterogeneously catalysed processes. Despite its importance, Co's surface chemistry is less studied compared to other key industrial catalyst metals. This stems in part from the difficulties associated with single crystal preparation and stability. Recent advances in scanning probe microscopy have enabled the atomic scale study of the structural, electronic, and magnetic properties of well-defined Co nanoparticles on metal substrates. Such systems offer an excellent platform to investigate the adsorption, diffusion, dissociation, and reaction of catalytically relevant molecules. Here we discuss the current understanding of metal-supported Co nanoparticles, review the limited literature on molecular adsorption, and suggest ways that they can be used to explore Co's rich surface chemistry. Our discussion is accompanied by new high resolution scanning tunnelling microscopy data from our group, which illustrate some of the interesting properties of these complex systems.

Graphical abstract: Rediscovering cobalt's surface chemistry

Article information

Article type
Perspective
Submitted
22 Nov 2011
Accepted
10 Feb 2012
First published
13 Feb 2012

Phys. Chem. Chem. Phys., 2012,14, 7215-7224

Rediscovering cobalt's surface chemistry

E. A. Lewis, A. D. Jewell, G. Kyriakou and E. C. H. Sykes, Phys. Chem. Chem. Phys., 2012, 14, 7215 DOI: 10.1039/C2CP23691E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements