Issue 20, 2012

Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution

Abstract

Cubic nanocrystalline CdS was hydrothermally transformed into hexagonal CdS in the presence of Na3PO4 at 180 °C for 12 h. The as-prepared CdS samples were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), BET, electrophoretic analysis, photoluminescence (PL) spectra and UV-Vis absorption spectra techniques. Effects of phosphate concentration, hydrothermal time and Pt loading content were investigated. Their photoactivity was evaluated by hydrogen evolution from aqueous solution containing formic acid as a hole scavenger under visible light (λ ≥ 420 nm) irradiation. Phosphate markedly promotes the phase transformation of CdS from cubic to hexagonal. With 0.050 mol L−1 PO43−, the formed hexagonal phase content reaches a maximum (82%). The as-prepared CdS with a high percentage of hexagonal phase displays excellent activity for photocatalytic hydrogen evolution. Pt is highly dispersed on CdS so that the Pt content for the effective hydrogen evolution is very low. The CdS loaded with 0.025 wt% Pt shows the maximum activity for the hydrogen evolution. The apparent quantum yield at 420 nm amounts to 21.4%. This work highlights a facile and low-cost method for the preparation of a highly-efficient CdS photocatalyst. The possible mechanisms were discussed.

Graphical abstract: Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution

Article information

Article type
Paper
Submitted
27 May 2012
Accepted
18 Jul 2012
First published
18 Jul 2012

CrystEngComm, 2012,14, 6974-6982

Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution

Y. Li, L. Tang, S. Peng, Z. Li and G. Lu, CrystEngComm, 2012, 14, 6974 DOI: 10.1039/C2CE25838B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements