Issue 1, 2012

ZnO plates synthesized from the ammonium zinc nitrate hydroxide precursor

Abstract

ZnO assembled hexagonal or porous rectangular plates were synthesized from the decomposition of a new precursor, ammonium zinc nitrate hydroxide (NH4Zn3(OH)6NO3), through a facile solvothermal route assisted by Poly(styrene sulfonic acid) sodium salt (PSS). XRD, BET surface area measurements, SEM, HRTEM and TG-DSC were used to describe the as-prepared products and understand the phase transformation. Our results indicate that the morphology of the ZnO plates is dependent strongly on the decomposition process of the precursor. By directly heating NH4Zn3(OH)6NO3, porous ZnO plates were obtained due to the thermal decomposition of the precursor. Using the same precursor under the solvothermal reaction, however, the final product is hexagonal ZnO plates. The growth mechanism of ZnO plates formed in different synthetic routes was proposed. Photoluminescence (PL) and photocatalytic properties of the as-prepared ZnO with different morphologies were studied. Porous ZnO plates showed three emission peaks, which may be induced by its microstructure and defect centres, and the porous ZnO showed the improved photocatalytic activity for photoreduction of CO2.

Graphical abstract: ZnO plates synthesized from the ammonium zinc nitrate hydroxide precursor

Article information

Article type
Paper
Submitted
28 Jun 2011
Accepted
08 Sep 2011
First published
17 Oct 2011

CrystEngComm, 2012,14, 154-159

ZnO plates synthesized from the ammonium zinc nitrate hydroxide precursor

L. Wan, X. Wang, S. Yan, H. Yu, Z. Li and Z. Zou, CrystEngComm, 2012, 14, 154 DOI: 10.1039/C1CE05805C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements