Issue 4, 2012

Selective extraction and preconcentration of ultra-trace level of mercury ions in water and fish samples using Fe3O4-magnetite-nanoparticles functionalized by triazene compound prior to its determination by inductively coupled plasma-optical emission spectrometry

Abstract

In this paper, new modified magnetite nanoparticles functionalized with triazene groups were designed and synthesized for extraction/preconcentration of sub-ppb level of mercury ions in water and fish samples prior to its determination with inductively coupled plasma optical emission spectrometry (ICP-OES). In the separation process, aqueous solution of Hg2+ ions was mixed with 150 mg of Fe3O4 magnetite nanoparticles modified with 1-(p-acetyl phenyl)-3-(o-ethoxy phenyl) triazene (AET) and then external magnetic field was applied for isolation of magnetite nanoparticles containing mercury ions. Experimental conditions for effective adsorption including pH, sample volume, eluent concentration and existing co-existing ions have been studied and established. Under the optimal extraction and preconcentration conditions, the limit of detection (LOD) of 0.04 ng mL−1 and the relative standard deviation (R.S.D) of 2.09% for five replicate extractions and measurements of 10 μg of Hg2+ ion in 1000 mL water solution were achieved by ICP-OES. The sorption capacity of functionalized Fe3O4 magnetite nanoparticles under optimum conditions has been found to be 10.26 mg of mercury ion per gram at pH 7 with the preconcentration factor of 500 (2 mL of elution for a 1000 mL sample volume). Standard solutions containing Hg2+ in the concentration range of 0.2–200 ng mL−1 were examined by the proposed procedure and it was observed that calibration curve was linear in this range (R2 = 0.999). The special advantages of the proposed method are high enrichment factor, fast separation and low detection limits compared with other methods.

Graphical abstract: Selective extraction and preconcentration of ultra-trace level of mercury ions in water and fish samples using Fe3O4-magnetite-nanoparticles functionalized by triazene compound prior to its determination by inductively coupled plasma-optical emission spectrometry

Article information

Article type
Paper
Submitted
28 Sep 2011
Accepted
19 Jan 2012
First published
08 Mar 2012

Anal. Methods, 2012,4, 959-966

Selective extraction and preconcentration of ultra-trace level of mercury ions in water and fish samples using Fe3O4-magnetite-nanoparticles functionalized by triazene compound prior to its determination by inductively coupled plasma-optical emission spectrometry

M. K. Rofouei, A. Rezaei, M. Masteri-Farahani and H. Khani, Anal. Methods, 2012, 4, 959 DOI: 10.1039/C2AY05623B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements