Issue 19, 2011

Tuning the swelling and mechanical properties of pH-responsive doubly crosslinked microgels using particle composition

Abstract

pH-Responsive microgel particles are crosslinked polymer colloid particles that swell when the pH approaches the pKa. They have attracted a great deal of interest because of the ability to prepare stimulus responsive dispersions. Microgels that have only one form of crosslinking are termed singly crosslinked microgels (SX microgels). SX microgels are defined here as microgel particles that contain intra-particle linkages as the only source of covalent crosslinks. Recently, we introduced the first examples of a new family of pH-responsive doubly crosslinked microgel (DX microgels) [Liu et al., Soft Matter, 2011, 7, 4696]. DX microgels are hydrogels composed of covalently-linked functionalised SX microgel particles. DX microgels contain inter-particle crosslinking as well as intra-particle crosslinking. Here, we investigate pH-responsive DX microgels prepared using a new, more versatile, microgel functionalisation strategy. Carbodiimide chemistry is used to vinyl-functionalise poly(MMA/MAA/EGDMA) (methyl methacrylate, methacrylic acid and ethyleneglycol dimethacrylate) microgels (abbreviated as M-EGD). The DX microgels were prepared using pH-triggered inter-penetration of 2-aminoethylmethacrylate (AEM) functionalised SX microgels and free-radical crosslinking. The DX microgels based on M-EGD had built-in microporosity. Furthermore, dynamic rheology data show for the first time that the elastic modulus of DX microgels is proportional to the extent of vinyl group functionalisation. The generality of this approach was demonstrated by the preparation of DX microgels based on poly(EA/MAA/BDD) (ethylacrylate and 1, 4-butanediol diacrylate), which is abbreviated as E-BDD. The pH-responsive DX microgels have high elastic modulus values, swell strongly and have low sol fractions. They are injectable and the DX microgels have improved swelling at low pH which should increase the pH range for potential biomaterial applications. The data are compared with those reported by Liu et al. and the differences discussed.

Graphical abstract: Tuning the swelling and mechanical properties of pH-responsive doubly crosslinked microgels using particle composition

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2011
Accepted
26 Jul 2011
First published
22 Aug 2011

Soft Matter, 2011,7, 9297-9306

Tuning the swelling and mechanical properties of pH-responsive doubly crosslinked microgels using particle composition

R. Liu, A. H. Milani, Jennifer. M. Saunders, T. J. Freemont and B. R. Saunders, Soft Matter, 2011, 7, 9297 DOI: 10.1039/C1SM05922J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements