Chemiluminescent acridinium dimethylphenyl esters, containing two methyl groups flanking the phenolic ester bond, display excellent chemiluminescence stability and are used as labels in automated immunoassays for clinical diagnostics. Light emission from these labels is triggered with alkaline peroxide in the presence of the cationic surfactant cetyltrimethylammonium chloride. Under these conditions, light emission is rapid and is complete in <5 s. In the present study we examined the effect of various surfactants on light emission from acridinium dimethylphenyl ester labels and their conjugates containing hydrophilic linkers derived either from hexa(ethylene)glycol or a sulfobetaine zwitterion. Sulfobetaine zwitterions are very polar and incorporation of these functional groups in acridinium dimethyphenyl esters and their conjugates represents a new approach to improving the aqueous solubility of these chemiluminescent labels. Our results indicate that in general, surfactants affect light emission from these labels and their conjugates by two discrete mechanisms. Cationic surfactants, but not anionic or non-ionic surfactants, accelerate overall light emission kinetics and a more modest effect is observed with zwitterionic surfactants. Surfactants also enhance total light output and the magnitude of this enhancement is maximal for cationic surfactants and a sulfobetaine zwitterionic surfactant. These observations are the first to clearly delineate the role of the surfactant on the chemiluminescence reaction pathway of acridinium esters and can be rationalized based on known effects of surfactant aggregates on bimolecular and unimolecular reactions.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?