Issue 5, 2011

Photoluminescence and conductivity studies of anthracene-functionalized rutheniumnanoparticles

Abstract

Carbene-stabilized ruthenium nanoparticles were functionalized with anthryl moieties by olefin metathesis reactions with 9-vinylanthracene, at a surface concentration of about 19.7%, as estimated by 1H NMR spectroscopic measurements. Because of the conjugated metal–ligand interfacial bonding interactions, UV-vis measurements of the resulting nanoparticles showed a new broad absorption band centered at 612 nm, in addition to the peaks observed with monomeric vinylanthracene. FTIR measurements depicted apparent red-shifts of the aromatic vibrational stretches as compared to those of the monomeric vinylanthracene, suggestive of decreasing bonding order of the aromatic moieties as a result of extended conjugation between the particle-bound anthracene groups. Photoluminescence measurements confirmed the notion that effective intraparticle charge delocalization occurred by virtue of the conjugated metal–ligand interfacial bonding interactions, with apparent red-shifts of the excitation peaks and blue-shifts of the emission features, as compared to those of the monomeric vinylanthracene. The diminishment of the Stokes shift was, at least in part, attributed to the different chemical environments surrounding the anthryl moieties on the nanoparticle surface. Electronic conductivity measurements showed that because of the conjugated Ru[double bond, length as m-dash]C π bonds, the activation energy for interparticle charge transport was about one order of magnitude lower than that observed with particles passivated by alkanethiolates. Additionally, whereas the original carbene-stabilized nanoparticles exhibited a semiconductor–metal transition within the temperature range of 100 to 320 K, anthracene-functionalized nanoparticles displayed apparent semiconducting behaviors with the ensemble conductivity increasing monotonically with temperature, most likely due to the disordering within the nanoparticle solids that arose from the different structures of the carbene ligands and anthryl moieties. These studies indicate that anthracene functionalization may be exploited as an effective route towards the manipulation of nanoparticle optoelectronic properties.

Graphical abstract: Photoluminescence and conductivity studies of anthracene-functionalized ruthenium nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2011
Accepted
13 Mar 2011
First published
15 Apr 2011

Nanoscale, 2011,3, 2294-2300

Photoluminescence and conductivity studies of anthracene-functionalized ruthenium nanoparticles

W. Chen, S. Pradhan and S. Chen, Nanoscale, 2011, 3, 2294 DOI: 10.1039/C1NR10158G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements