Jump to main content
Jump to site search

Issue 5, 2011
Previous Article Next Article

Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles

Author affiliations

Abstract

The use of small molecule drugs in cancer chemotherapy has mostly been limited by dose-dependent toxicity and development of drug resistance resulting from repeated administrations. To overcome such problems, efforts have been made to develop drug delivery systems that can bear multiple therapeutic agents in one system. The purpose of this study is to deliver human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) and doxorubicin (Dox, an anti-cancer drug) with micellar nanoparticles self-assembled from a biodegradable cationic copolymer P(MDS-co-CES) to achieve synergistic cytotoxic effects in cancer cells. Exogenously expressed TRAIL using recombinant methods shows great potential in cancer therapy as it induces cell death selectively in cancer cells with limited toxicity to normal tissues. Dox-loaded nanoparticles and TRAIL formed stable nanocomplexes with a size of ∼225 nm and zeta potential of ∼70 mV. Effects of nanocomplexes on both wild type and TRAIL-resistant SW480 colorectal carcinoma cells were investigated. The assemblies of Dox and TRAIL with P(MDS-co-CES) nanoparticles were efficiently delivered to cancer cells. Receptor-blocking studies showed that the nanocomplexes entered cellsviadeath receptor-mediated endocytosis. Synergism in cell death induction was analysed by the isobologram method to study drug interactions. Cytotoxicity of the nanocomplexes to non-cancerous cells was significantly lower than cancerous cells. Anti-proliferative effects of nanocomplexes were retained in remaining cancer cells in long-term cultures after treatment with the nanocomplexes. In summary, this Dox and TRAIL co-delivery system can be a promising candidate for cancer treatment.

Graphical abstract: Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Nov 2010, accepted on 24 Jan 2011 and first published on 24 Feb 2011


Article type: Paper
DOI: 10.1039/C0MB00266F
Citation: Mol. BioSyst., 2011,7, 1512-1522

  •   Request permissions

    Synergistic anti-cancer effects via co-delivery of TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) and doxorubicin using micellar nanoparticles

    A. L. Z. Lee, S. H. K. Dhillon, Y. Wang, S. Pervaiz, W. Fan and Y. Y. Yang, Mol. BioSyst., 2011, 7, 1512
    DOI: 10.1039/C0MB00266F

Search articles by author

Spotlight

Advertisements