Issue 12, 2011

Predicting antibody complementarity determining region structures without classification

Abstract

Antibodies are used extensively in medical and biological research. Their complementarity determining regions (CDRs) define the majority of their antigen binding functionality. CDR structures have been intensively studied and classified (canonical structures). Here we show that CDR structure prediction is no different from the standard loop structure prediction problem and predict them without classification. FREAD, a successful database loop prediction technique, is able to produce accurate predictions for all CDR loops (0.81, 0.42, 0.96, 0.98, 0.88 and 2.25 Å RMSD for CDR-L1 to CDR-H3). In order to overcome the relatively poor predictions of CDR-H3, we developed two variants of FREAD, one focused on sequence similarity (FREAD-S) and another which includes contact information (ConFREAD). Both of the methods improve accuracy for CDR-H3 to 1.34 Å and 1.23 Å respectively. The FREAD variants are also tested on homology models and compared to RosettaAntibody (CDR-H3 prediction on models: 1.98 and 2.62 Å for ConFREAD and RosettaAntibody respectively). CDRs are known to change their structural conformations upon binding the antigen. Traditional CDR classifications are based on sequence similarity and do not account for such environment changes. Using a set of antigen-free and antigen-bound structures, we compared our FREAD variants. ConFREAD which includes contact information successfully discriminates the bound and unbound CDR structures and achieves an accuracy of 1.35 Å for bound structures of CDR-H3.

Graphical abstract: Predicting antibody complementarity determining region structures without classification

Supplementary files

Article information

Article type
Paper
Submitted
06 Jun 2011
Accepted
21 Sep 2011
First published
20 Oct 2011

Mol. BioSyst., 2011,7, 3327-3334

Predicting antibody complementarity determining region structures without classification

Y. Choi and C. M. Deane, Mol. BioSyst., 2011, 7, 3327 DOI: 10.1039/C1MB05223C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements