Issue 7, 2011

Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines

Abstract

The sensitive oxidations of sulfur containing amino acids (i.e., cysteines and methionines) commonly control protein function, and act as important signaling mechanisms to modify metabolic responses to environmental stressors. Mechanisms associated with cysteine oxidation to form sulfenic acid and disulfides (i.e., cystine and glutathione adducts), and their reversibility through thioredoxin-dependent mechanisms, are broadly appreciated as important regulatory mechanisms that control the function of a range of different proteins. Less commonly understood are the cellular consequences of methionine oxidation to form methionine sulfoxide, as the structural requirements for their thioredoxin-dependent reduction by methionine sulfoxide reductases limit the reversibility of methionine oxidation to sequences within surface exposed and conformationally disordered regions of proteins. Surface exposed methionines are commonly involved in molecular recognition between transient protein signaling complexes, where their oxidation disrupts productive proteinprotein interactions linked to a range of cellular responses. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress responses in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the physical basis for differences in the sensitivity of individual methionines within plant and animal calmodulin to reactive oxygen species (ROS), the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes. It is suggested that, in combination with high-throughput proteomic methods and current generation informatics tools, these mechanistic insights permit useful predictions of oxidatively sensitive signaling proteins that act as redox and stress sensors in response tomethionine oxidation.

Graphical abstract: Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines

Article information

Article type
Review Article
Submitted
26 Feb 2011
Accepted
03 May 2011
First published
19 May 2011

Mol. BioSyst., 2011,7, 2101-2109

Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines

D. J. Bigelow and T. C. Squier, Mol. BioSyst., 2011, 7, 2101 DOI: 10.1039/C1MB05081H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements