Jump to main content
Jump to site search

Issue 18, 2011

Diamagnetically trapped arrays of living cells above micromagnets

Author affiliations

Abstract

Cell arrays are of foremost importance for many applications in pharmaceutical research or fundamental biology. Although arraying techniques have been widely investigated for adherent cells, organization of cells in suspension has been rarely considered. The arraying of non-adherent cells using the diamagnetic repulsive force is presented. A planar arrangement of Jurkat cells is achieved at the microscale above high quality microfabricated permanent magnets with remanent magnetization of Jr ≈ 1 T, in the presence of a paramagnetic contrast agent. The cytotoxicity of three Gd based contrast agents, Gd-DOTA, Gd-BOPTA and Gd-HP-DO3A, is studied. Among them, Gd-HP-DO3A appears to be the most biocompatible toward Jurkat cells. In close agreement with analytical simulations, diamagnetically ‘suspended’ cells have been successfully arrayed above square and honeycomb-like micromagnet arrays, which act as a “diamagnetophobic” surface. Living cell trapping is achieved in a simple manner using concentrations of Gd-HP-DO3A as low as 1.5 mM.

Graphical abstract: Diamagnetically trapped arrays of living cells above micromagnets

Supplementary files

Article information


Submitted
15 Mar 2011
Accepted
04 Jul 2011
First published
01 Aug 2011

Lab Chip, 2011,11, 3153-3161
Article type
Paper

Diamagnetically trapped arrays of living cells above micromagnets

P. Kauffmann, A. Ith, D. O'Brien, V. Gaude, F. Boué, S. Combe, F. Bruckert, B. Schaack, N. M. Dempsey, V. Haguet and G. Reyne, Lab Chip, 2011, 11, 3153 DOI: 10.1039/C1LC20232D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements