Issue 7, 2011

High-throughput cell cycle synchronization using inertial forces in spiral microchannels

Abstract

Efficient synchronization and selection of cells at different stages of the cell replication cycle facilitates both fundamental research and development of cell cycle-targeted therapies. Current chemical-based synchronization methods are unfavorable as these can disrupt cell physiology and metabolism. Microfluidic systems developed for physical cell separation offer a potential alternative over conventional cell synchronization approaches. Here we introduce a spiral microfluidic device for cell cycle synchronization, using the combined effects of inertial forces and Dean drag force. By exploiting the relationship between cell diameter and cell cycle (DNA content/ploidy), we have successfully fractionated several asynchronous mammalian cell lines, as well as primary cells comprising bone marrow-derived human mesenchymal stem cells (hMSCs), into enriched subpopulations of G0/G1 (>85%), S, and G2/M phases. This level of cell cycle enrichment is comparable to existing microfluidic systems, but the throughput (∼15 × 106cells per h) and viability (∼95%) of cells thus synchronized are significantly greater. Further, this platform provides rapid collection of synchronized cells or of diameter-sorted cells post-separation, to enable diverse applications in the study and manipulation of cell proliferation.

Graphical abstract: High-throughput cell cycle synchronization using inertial forces in spiral microchannels

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2010
Accepted
21 Jan 2011
First published
18 Feb 2011

Lab Chip, 2011,11, 1359-1367

High-throughput cell cycle synchronization using inertial forces in spiral microchannels

W. C. Lee, A. A. S. Bhagat, S. Huang, K. J. Van Vliet, J. Han and C. T. Lim, Lab Chip, 2011, 11, 1359 DOI: 10.1039/C0LC00579G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements