Issue 21, 2011

A universal multiplex PCR strategy for 100-plex amplification using a hydrophobically patterned microarray

Abstract

Both basic research and clinical medicine have urgent demands for highly efficient strategies to simultaneously identify many different DNA sequences within a single tube. Effective and simultaneous amplification of multiple target sequences is a prerequisite for any successful multiple nucleic acid detection method. Multiplex PCR is one of the best choices for this purpose. However, due to the intrinsic interference and competition among primer pairs in the same tube, multiple rounds of highly empirical optimization procedures are usually required to establish a successful multiplex PCR reaction. To address this challenge, we report here a universal multiplex PCR strategy that is capable of over 100-plex amplification using a specially designed microarray in which hydrophilic microwells are patterned on a hydrophobic chip. On such an array, primer pairs tagged with a universal sequence are physically separated in individual hydrophilic microwells on an otherwise hydrophobic chip, enabling many unique PCR reactions to be proceeded simultaneously during the first step of the procedure. The PCR products are then isolated and further amplified from the universal sequences, producing a sufficient amount of material for analysis by conventional gel electrophoresis or DNA microarray technology. This strategy is abbreviated as “MPH&HPM” for “[M with combining low line]ultiplex [P with combining low line]CR on a [H with combining low line]ydrophobically and [H with combining low line]ydrophilically [P with combining low line]atterned [M with combining low line]icroarray”. The feasibility of this method is first demonstrated by a multiplex PCR reaction for the simultaneous detection of eleven pneumonia-causing pathogens. Further, we demonstrate the power of this strategy with a highly successful 116-plex PCR reaction that required only little prior optimization. The effectiveness of the MPH&HPM strategy with clinical samples is then illustrated with the detection of deleted exons of the Duchenne Muscular Dystrophy (DMD) gene, the results are in excellent agreement with the clinical records. Because of its generality, simplicity, flexibility, specificity and capacity of more than 100-plex amplification, the MPH&HPM strategy should have broad applications in both laboratory research and clinical applications when multiplex nucleic acid analysis is required.

Graphical abstract: A universal multiplex PCR strategy for 100-plex amplification using a hydrophobically patterned microarray

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2011
Accepted
02 Aug 2011
First published
09 Sep 2011

Lab Chip, 2011,11, 3609-3618

A universal multiplex PCR strategy for 100-plex amplification using a hydrophobically patterned microarray

Y. Li, S. Guo, N. Shao, S. Tu, M. Xu, Z. Ren, X. Ling, G. Wang, Z. Lin and S. Tao, Lab Chip, 2011, 11, 3609 DOI: 10.1039/C1LC20526A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements