Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 36, 2011
Previous Article Next Article

Graphene/cellulose nanocomposite paper with high electrical and mechanical performances

Author affiliations

Abstract

Graphene/cellulose nanocomposite paper with high mechanical and electrical performances was reported in this study by combining reduced graphene oxide sheets (RGO) and amine-modified nanofibrillated cellulose (A-NFC) in a well-controlled manner. By adjusting the GO content, various graphene/cellulose nanocomposites with 0.1–10 wt% content of graphene were obtained. The RGO/A-NFC nanocomposite synthesized by the developed method exhibits an electrical percolation threshold of 0.3 wt% with an electrical conductivity of 4.79 × 10−4 S m−1, which is well above the antistatic value. Furthermore, with 10 wt% of graphene, a high conductivity of 71.8 S m−1 was measured for the nanocomposite. Moreover, it was found that on addition of only 0.3 wt% of graphene, the tensile strength increased by 1.2 fold and 2.3 folds compared to that of the neat cellulose and graphene oxide paper, respectively, revealing an excellent reinforcement of graphene sheets. Moreover, the elongation at break of the composite with graphene content was 8.5%, which is similar to that of A-NFC paper and much higher than that of GO paper. It is noteworthy to mention that with 5 wt% of graphene, the RGO/A-NFC composite paper showed a significantly enhanced tensile strength of 273 MPa that is 1.4 fold and 2.8 folds higher than that of the cellulose papers and graphene oxide paper, respectively. Such a high enhancement of electrical and mechanical properties in cellulose paper by graphene has never been reported before for any carbon-based material/cellulose composite paper.

Graphical abstract: Graphene/cellulose nanocomposite paper with high electrical and mechanical performances

Back to tab navigation

Supplementary files

Article information


Submitted
13 May 2011
Accepted
17 Jun 2011
First published
08 Aug 2011

J. Mater. Chem., 2011,21, 13991-13998
Article type
Paper

Graphene/cellulose nanocomposite paper with high electrical and mechanical performances

N. D. Luong, N. Pahimanolis, U. Hippi, J. T. Korhonen, J. Ruokolainen, L. Johansson, J. Nam and J. Seppälä, J. Mater. Chem., 2011, 21, 13991
DOI: 10.1039/C1JM12134K

Search articles by author

Spotlight

Advertisements