Issue 44, 2011

Porous ceramic anode materials for photo-microbial fuel cells

Abstract

This study focuses on porous ceramics as a promising new type of anode material for photo-microbial fuel cells (p-MFCs). The anodes were made from titanium dioxide and chemical vapour deposition was used to coat them with a layer of fluorine doped tin oxide (FTO) to make them conducting. Chlorella vulgaris biofilms were grown in the millimetre sized pores of the ceramic electrodes, producing an extensive extra cellular matrix that was anchored directly to the electrode surface. In contrast algal cells grown on carbon felt appeared misshapen and lacked a continuous extra cellular matrix. A preliminary comparison of different anodes in p-MFCs showed that the power density was ∼16 times higher on a ceramic anode compared to the best performing carbon anode. Good power densities were also found for algae grown directly onto FTO coated glass, but in contrast to the ceramic anodes the biofilm did not adhere strongly to the planar surface and was easily removed or damaged.

Graphical abstract: Porous ceramic anode materials for photo-microbial fuel cells

Article information

Article type
Paper
Submitted
01 Jul 2011
Accepted
15 Sep 2011
First published
12 Oct 2011

J. Mater. Chem., 2011,21, 18055-18060

Porous ceramic anode materials for photo-microbial fuel cells

R. Thorne, H. Hu, K. Schneider, P. Bombelli, A. Fisher, L. M. Peter, A. Dent and P. J. Cameron, J. Mater. Chem., 2011, 21, 18055 DOI: 10.1039/C1JM13058G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements