Issue 20, 2011

Highly ordered transition metal ferrite nanotube arrays synthesized by template-assisted liquid phase deposition

Abstract

Highly ordered spinel ferrite MxFe3−xO4 (M = Ni, Co, Zn) nanotube arrays were synthesized in anodic aluminium oxide (AAO) templates with a pore size of 200 nm by combining a liquid phase deposition (LPD) method with a template-assisted route. The morphology of the transition metal ferrite nanotubes was characterized by electron microscopy (FE-SEM; TEM, SAED and HRTEM) and atomic force microscopy (AFM), whereas their chemical composition was determined by inductive coupling plasma (ICP). The phase purity was studied by X-ray diffraction (XRD) and the magnetic properties of the nanotubes were measured by SQUID measurements. Unlike the deposition of thin film structures, nanotube arrays form within the pores of the AAO templates in a much shorter time due to the attractive interactions between the positively charged AAO and the negatively charged metal complex species formed in the treatment solution. The as-deposited nanotubes are amorphous in nature and can be converted into polycrystalline metal ferrites via a post-synthesis heat treatment which induce the dehydroxylation, crystallization and formation of the spinel structure. The resulting nanotubes are uniform with smooth surfaces and open ends and their wall thickness can be varied from 4 to 26 nm by increasing the deposition time from 1 to 4 h. Significant differences in the magnetic properties of the ferrite nanotubes have been observed and these differences seem to result from the chemical composition, the wall thickness and the annealing temperature of the spinel ferrite nanotubes.

Graphical abstract: Highly ordered transition metal ferrite nanotube arrays synthesized by template-assisted liquid phase deposition

Article information

Article type
Paper
Submitted
19 Dec 2010
Accepted
01 Mar 2011
First published
04 Apr 2011

J. Mater. Chem., 2011,21, 7145-7153

Highly ordered transition metal ferrite nanotube arrays synthesized by template-assisted liquid phase deposition

A. Yourdkhani and G. Caruntu, J. Mater. Chem., 2011, 21, 7145 DOI: 10.1039/C0JM04441E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements