Issue 31, 2011

Ligands affect the crystal structure and photovoltaic performance of thin films of PbSe quantum dots

Abstract

We have prepared thin films of PbSe quantum dots (QDs) featuring three different ligands, oleic acid (OA), butylamine (BA), and 1,2-ethanedithiol (EDT), which have pronounced affects on the arrangement and photovoltaic performance of the PbSe QDs in the thin films. Transmission electron microscopy revealed that ligands that altered the inter-QD spacing induced significant changes in the packing of the PbSe QDs in localized regions of small areas (300 × 300 nm) of the thin films: from a superlattice of OA-capped PbSe QDs to a chaotic pattern of EDT-capped PbSe QDs. Using a synchrotron X-ray reflectivity probe and data fitting, we determined that the roughness decreased and the average densities increased for large-area (1.5 × 1.5 cm) PbSe QD thin films capped with BA and EDT, relative to those of the OA-capped PbSe QD film. In particular, the PbSe QDs' vertical packing density, which is critical for charge transport, increased substantially for the system incorporating EDT ligands. As a result, devices containing the EDT-treated PbSe QD film as the active layer displayed much improved power conversion efficiencies (PCEs) relative to those of corresponding devices featuring either the OA- or BA-capped PbSe QD films as active layers. Adopting a layer-by-layer technique, we fabricated a EDT-capped PbSe QD device that exhibited a PCE of 2.45%.

Graphical abstract: Ligands affect the crystal structure and photovoltaic performance of thin films of PbSe quantum dots

Article information

Article type
Paper
Submitted
16 Dec 2010
Accepted
02 Feb 2011
First published
23 Feb 2011

J. Mater. Chem., 2011,21, 11605-11612

Ligands affect the crystal structure and photovoltaic performance of thin films of PbSe quantum dots

C. Kuo, M. Su, C. Ku, S. Wang, H. Lee and K. Wei, J. Mater. Chem., 2011, 21, 11605 DOI: 10.1039/C0JM04417B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements