Issue 14, 2011

Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors

Abstract

Two different growth factors were physically and chemically loaded into a single nanofibrous matrix to increase wound healing efficacy and to obtain bi-phasic release profiles of the loaded growth factors. Amine-functionalized block copolymers composed of PCL and PEG were synthesized and subsequently co-electrospun with a bFGF solution to prepare coaxial nanofibrous meshes. The nanofibrous meshes were chemically modified with an EGF by conjugating surface-exposed amine groups of nanofibers to carboxylate groups of EGF. The characterization of a core-encapsulated bFGF and a surface-immobilized EGF by X-ray photoelectron spectroscopy revealed distinctive peaks of nitrogen atoms, which confirm the presence of a surface-immobilized EGF on the nanofiber. The release profiles of the bFGF and the EGF clearly demonstrated binary release profiles of each protein: the bFGF showed a high initial burst in 24 h, whereas the EGF showed no negligible release in 7 days. Human primary keratinocyte and fibroblast cells cultivated on the nanofibrous meshes showed the highest cellular proliferation on mesh composed of the bFGF and the EGF. In an animal study, the wound closure rates of diabetic ulcers were significantly increased in 7 days when bFGF/EGF nanofibrous meshes were administered to dorsal wound sites. The expression levels of keratinocyte-specific markers were examined by RT-PCR, and keratin 14, 5, 1 have higher expression levels than the control groups. This outcome strongly suggests that bi-phasic release of bFGF and EGF greatly supported tissue recovery with the similar phenotypes as the original keratinized tissues. A histological examination of the recovered tissue also confirms that bFGF/EGF nanofibrous meshes increase the accumulation of both collagen and a cemented matrix of keratin. Thus, the nanofibrous matrix is a promising wound dressing material that can increase wound healing rates while reducing scar formation.

Graphical abstract: Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors

Article information

Article type
Paper
Submitted
29 Oct 2010
Accepted
04 Jan 2011
First published
17 Feb 2011

J. Mater. Chem., 2011,21, 5258-5267

Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors

J. S. Choi, S. H. Choi and H. S. Yoo, J. Mater. Chem., 2011, 21, 5258 DOI: 10.1039/C0JM03706K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements