Issue 4, 2011

Compact-designed supercapacitors using free-standing single-walled carbon nanotube films

Abstract

We reported the realization of assembling compact-designed supercapacitors using large-scaled free-standing and flexible single-walled carbon nanotube (SWCNT) films as both anode and cathode. A prototype of the processing procedures was developed to obtain the uniform spreading of the SWCNT films onto the separators serving as both electrodes and charge collectors without metallic current collectors, leading to a simplified and lightweight architecture. The area of SWCNT film on a separator can be scaled up and its thickness can be extended. High energy and power densities (43.7 Wh kg−1 and 197.3 kW kg−1, respectively) were achieved from the prepared SWCNT film-based compact-designed supercapacitors with small equivalent series resistance. The specific capacitance of this kind of compact-designed SWCNT film supercapacitor is about 35 F g−1. These results clearly show the potential application of free-standing SWCNT film in compact-designed supercapacitor with enhanced performance and significantly improved energy and power densities.

Graphical abstract: Compact-designed supercapacitors using free-standing single-walled carbon nanotube films

Article information

Article type
Paper
Submitted
14 Jul 2010
Accepted
10 Jan 2011
First published
10 Feb 2011

Energy Environ. Sci., 2011,4, 1440-1446

Compact-designed supercapacitors using free-standing single-walled carbon nanotube films

Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao and S. Xie, Energy Environ. Sci., 2011, 4, 1440 DOI: 10.1039/C0EE00261E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements