Issue 11, 2011

Metabolite-based mutualism between Pseudomonas aeruginosaPA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems

Abstract

Understanding the ecological relationships of the microbiota in bioelectrochemical systems (BESs) is necessary to gain deeper insight into their performance. Here, we show that the fermentation product 2,3-butanediol stimulates mutually beneficial interactions between Pseudomonas aeruginosaPA14 and Enterobacter aerogenes in a BES with glucose as the initial substrate under microaerobic conditions. The experiments were conducted in potentiostatically poised 3-electrode reactors. Under these conditions: (i) the current density by a co-culture of P. aeruginosa and E. aerogenes increased at least 14-fold compared to the current density by either of these two bacteria alone; and (ii) E. aerogenes fermented glucose principally to 2,3-butanediol, which was subsequently consumed by P. aeruginosa. To determine the benefits to each microorganism in this symbiosis, we conducted experiments with pure cultures. The current production by a pure culture of P. aeruginosa with 2,3-butanediol was increased 2-fold compared with glucose as the carbon source. This was due to enhanced phenazine production by P. aeruginosa. Further, pyocyanin comprised the majority (92%) of the phenazines produced by P. aeruginosa with 2,3-butanediol, but only 29% with glucose. The current production by a pure culture of E. aerogenes increased ∼19-fold when the growth medium was supplemented with 35 µg ml−1 of pyocyanin as the electron mediator. We also observed that E. aerogenes generated maximum current densities with pyocyanin compared to the other three phenazines, indicating that E. aerogenes respires most effectively with pyocyanin—the phenazine which production is stimulated by this microbe's product (2,3-butanediol). Concomitantly, a decrease in fermentation products and enhanced growth with increasing concentrations of pyocyanin implies a shift towards electrode-based respiration by E. aerogenes rather than fermentation. Therefore, the synergism in current generation by the co-culture can be attributed to the combination of enhanced pyocyanin production by P. aeruginosa with 2,3-butanediol and the ability of E. aerogenes to efficiently respire. This study is the first to demonstrate metabolite based “inter-species communication” in BESs, resulting in enhanced electrochemical activity. It also explains how an inconsequential fermenter can become an important electrode-respiring bacterium within an ecological network at the anode.

Graphical abstract: Metabolite-based mutualism between Pseudomonas aeruginosaPA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2011
Accepted
19 Apr 2011
First published
02 Jun 2011

Energy Environ. Sci., 2011,4, 4550-4559

Metabolite-based mutualism between Pseudomonas aeruginosaPA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems

A. Venkataraman, M. A. Rosenbaum, S. D. Perkins, J. J. Werner and L. T. Angenent, Energy Environ. Sci., 2011, 4, 4550 DOI: 10.1039/C1EE01377G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements