Issue 7, 2011

Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors

Abstract

Si Quantum dots (QD's) are offering the possibilities for improving the efficiency and lowering the cost of solar cells. In this paper we study the PV-related critical factors that may affect design of Si QDs solar cell by performing atomistic calculation including many-body interaction. First, we find that the weak absorption in bulk Si is significantly enhanced in Si QDs, specially in small dot size, due to quantum-confinement induced mixing of Γ-character into the X-like conduction band states. We demonstrate that the atomic symmetry of Si QD also plays an important role on its bandgap and absorption spectrum. Second, quantum confinement has a detrimental effect on another PV property – it significantly enhances the exciton binding energy in Si QDs, leading to difficulty in charge separation. We observe universal linear dependence of exciton binding energy versus excitonic gap for all Si QDs. Knowledge of this universal linear function will be helpful to obtain experimentally the exciton binding energy by just measuring the optical gap without requiring knowledge on dot shape, size, and surface treatment. Third, we evaluate the possibility of resonant charge transport in an array of Si QDs via miniband channels created by dot-dot coupling. We show that for such charge transport the Si QDs embedded into a matrix should have tight size tolerances and be very closely spaced. Fourth, we find that the loss of quantum confinement effect induced by dot-dot coupling is negligible – smaller than 70 meV even for two dots at intimate contact.

Graphical abstract: Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors

Article information

Article type
Paper
Submitted
10 Jan 2011
Accepted
07 Apr 2011
First published
19 May 2011

Energy Environ. Sci., 2011,4, 2546-2557

Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors

J. Luo, P. Stradins and A. Zunger, Energy Environ. Sci., 2011, 4, 2546 DOI: 10.1039/C1EE01026C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements