Issue 2, 2011

Anhydrous tertiary alkanolamines as hybrid chemical and physical CO2 capture reagents with pressure-swing regeneration

Abstract

Anhydrous DMEA, DEEA and DIPEA are found to absorb carbon dioxide under pressure via chemical binding and physical absorption. The chemical CO2-bound derivatives of these materials are zwitterionic alkylcarbonate salts which are characterized by high-pressure 13C NMR. DMEA, DEEA and DIPEA absorb 20 wt.%, 17 wt.% and 16 wt.% carbon dioxide, respectively, at 300 psig (20.6 ATM). An increasing chemical carbon dioxide uptake capacity trend of DMEA > DEEA > DIPEA is observed while the physical CO2 absorption trend is DIPEA > DEEA > DMEA. DMEA captures up to 45 mole % (20 wt.%) of CO2 at 500 psig via both chemical binding and physical absorption. The amount of chemically bound and physically absorbed CO2 is directly linked to the CO2 pressure over the liquid. The zwitterion DMEA-CO2 regenerates CO2 and DMEA upon depressurization, allowing for an economical pressure swing regeneration rather than thermal regeneration. DMEA absorbs/releases CO2 repeatedly with no decline in capacity.

Graphical abstract: Anhydrous tertiary alkanolamines as hybrid chemical and physical CO2 capture reagents with pressure-swing regeneration

Article information

Article type
Paper
Submitted
29 Sep 2010
Accepted
03 Nov 2010
First published
25 Nov 2010

Energy Environ. Sci., 2011,4, 480-484

Anhydrous tertiary alkanolamines as hybrid chemical and physical CO2 capture reagents with pressure-swing regeneration

J. E. Rainbolt, P. K. Koech, C. R. Yonker, F. Zheng, D. Main, M. L. Weaver, J. C. Linehan and D. J. Heldebrant, Energy Environ. Sci., 2011, 4, 480 DOI: 10.1039/C0EE00506A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements