Issue 15, 2011

Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (CaxGd1−x)2(Zr1−xMx)2O7 pyrochlore solid solutions

Abstract

The effect of simultaneous substitutions of Ca at A site and Nb or Ta at B site in pyrochlore-type solid solutions: (CaxGd1−x)2(Zr1−xMx)2 O7 (x = 0.1, 0.2, 0.3, 0.4, 0.5 and M = Nb or Ta) were studied by powder X-ray diffraction (XRD), FT NIR Raman spectroscopic techniques and transmission electron microscopy. The solid solutions were prepared by the conventional high-temperature ceramic route. The XRD results and Rietveld analysis revealed that the defect fluorite structure of Gd2Zr2O7 progressively changed to a more ordered pyrochlore phase by simultaneous substitutions at A and B sites. Raman spectroscopy reveals the progressive ordering in the anion sublattice with simultaneous doping. High-resolution images and selected-area electron diffraction patterns obtained from TEM confirms the XRD and Raman spectroscopic results. High-temperature XRD studies show that the lattice expansion coefficient in these pyrochlore oxides is of the order of 10−6 K−1. Lattice thermal expansion coefficient increases with increase of disorder in pyrochlore oxides, and hence the variation of thermal expansion coefficient with composition is also a good indicator of disordering in pyrochlore-type oxides. The ionic conducting properties of the samples were characterised by impedance spectroscopy, and it was found that Nb-doped compositions show a considerable change in conductivity near the phase boundary of disordered pyrochlore and defect fluorite phases.

Graphical abstract: Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (CaxGd1−x)2(Zr1−xMx)2O7 pyrochlore solid solutions

Article information

Article type
Paper
Submitted
02 Dec 2010
Accepted
04 Jan 2011
First published
15 Feb 2011

Dalton Trans., 2011,40, 3839-3848

Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (CaxGd1−x)2(Zr1−xMx)2O7 pyrochlore solid solutions

A. N. Radhakrishnan, P. P. Rao, K. S. M. Linsa, M. Deepa and P. Koshy, Dalton Trans., 2011, 40, 3839 DOI: 10.1039/C0DT01688H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements