Issue 12, 2011

Artificial DNA cutters for DNA manipulation and genome engineering

Abstract

This tutorial review provides recent developments in artificial cutters for site-selective scission of DNA with the focus on chemistry-based DNA cutters. They are useful tools for molecular biology and biotechnology, since their site-selectivity of scission is much higher than that of naturally occurring restriction enzymes and also their scission site is freely chosen. In order to prepare these cutters, a DNA-cutting molecule is combined with a sequence-recognizing molecule in a covalent or non-covalent way. At targeted sites in single-stranded and double-stranded DNAs, the scission occurs via either oxidative cleavage of nucleotides or hydrolysis of phosphodiester linkages. Among many successful examples, an artificial restriction DNA cutter, prepared from Ce(IV)/EDTA and pseudo-complementary peptide nucleic acid, hydrolyzed double-stranded DNA at the target site. The scission site and scission specificity are determined simply in terms of the Watson–Crick rule so that even the whole genome of human beings was selectively cut at one predetermined site. Consistently, homologous recombination in human cells was successfully promoted by this tool. For the purpose of comparison, protein-based DNA cutters (e.g., zinc finger nucleases) are also briefly described. The potential applications of these cutters and their future aspects are discussed.

Graphical abstract: Artificial DNA cutters for DNA manipulation and genome engineering

Article information

Article type
Tutorial Review
Submitted
09 Feb 2011
First published
12 May 2011

Chem. Soc. Rev., 2011,40, 5657-5668

Artificial DNA cutters for DNA manipulation and genome engineering

Y. Aiba, J. Sumaoka and M. Komiyama, Chem. Soc. Rev., 2011, 40, 5657 DOI: 10.1039/C1CS15039A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements